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Abstract. The effect of a uniform electric field on the time evolution of a single-electron
wavefunction can be rigorously expressed by making use of the Avron–Herbst transformation.
We extend the transformation to the quantized Schrödinger field for a many-electron system
with an electron–electron interaction. The transformation for the time-ordered product of the
Schr̈odinger field, which is the operator part of the Green function, is also derived.

1. Introduction

In condensed matter theory the electrical conductivity of electrons is one of the most
important subjects and many theoretical attempts have been made [1, 2]. One of the
widely used practical formulations is the linear-response theory, which gives physically
acceptable results when it is used together with the finite temperature generalized Ward–
Takahashi relations [3]. However, there are still unsolved fundamental difficulties in the
theory of electrical conductivity. The main difficulties of the theory may be classified into
two categories. One is the statistical physics aspect concerning the non-equilibrium and
irreversible nature of the problem [4]. Another is the microscopic aspect, that is, the many-
body wavefunction of electrons under the influence of the external electric field. Intensive
research has been made by a number of authors on the former aspect of the problem.
However, the latter does not seem to have attracted much attention despite its obvious
significance in the theory of the electrical conductivity of electrons. The aim of this paper
is to provide a new theoretical tool that seems to be useful for the investigation of the latter
aspect.

When an external electric field is applied to an electron gas, its wavefunction cannot
remain as a simple plane wave. From a classical mechanical point of view, the electrons will
be accelerated and gain additional momentum and kinetic energy. The accelerated electrons
may be scattered by impurities or lattice ions and again accelerated by the electric field.
The number of repetitions of this process will be averaged and observed as a macroscopic
steady state of electrical current [5]. In order to apply the quantum mechanical formulation
to the problem, we need to know the behaviour of the electron wavefunction under the
influence of an external electric field.

The effects of an external electric field on Bloch electrons have been studied by several
authors [6–12]. Among them, Avron and Herbst [12] gave an important transformation
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for an electron wavefunction. For any wavefunction satisfying the free Schrödinger
equation, the transformation yields the time evolution with an external uniform electric
field. Their result seems to be of paramount significance in the investigation of the electron
wavefunction in an electric field, because it provides a useful tool to construct a physically
meaningful wavepacket that propagates under the influence of the electric field, without any
approximation.

In metals or semiconductors, electrons cannot be described by a simple assembly of
individual single-electron wavefunctions. We have to take into account the statistics of
the particles. For electrons, the many-electron wavefunction must be antisymmetric under
the permutation of electrons. Such antisymmetric many-electron wavefunctions can be
adequately described in terms of the second quantized Schrödinger field. In this paper we
shall present an extension of the Avron–Herbst transformation to the quantized Schrödinger
field that describes an interacting many-electron system. We shall derive an extended Avron–
Herbst transformation for the electron Schrödinger field operator and also the time-ordered
product of the field operators. The transformation for the time-ordered product can be used
to obtain a corresponding transformation for the Green function if it is used with a model
ground state of the electron system.

In section 2 we consider a single-electron wavefunction and derive the Avron–Herbst
transformation. In section 3 we consider the second quantized electron Schrödinger field
and show that the Avron–Herbst transformation can be extended to the electron field with
the electron–electron interaction. In section 4 the Avron–Herbst transformation is further
extended to the time-ordered product of the electron Schrödinger field. Brief concluding
remarks shall be given in section 5.

2. Avron–Herbst transformation

In this section we shall derive the Avron–Herbst transformation from a physical point
of view, leaving the rigorous mathematical discussion to their original paper [12]. The
Schr̈odinger equation for a particle in a uniform external field such as electric field or
gravitational field has been discussed in the literature [13]. One of the possible solutions
is the well known Airy function, whose asymptotic behaviour is fully understood [14].
Here we consider an electron in a uniform electric field. For simplicity we neglect the
spin variables of the electron. In the following discussion the spin is not essential. The
Schr̈odinger equation for the electron is

ih̄
∂

∂t
ψ(x, t) =

(
− h̄

2

2m
∇2− Fx

)
ψ(x, t) (2.1)

wherem is the electron mass,x ≡ (x, y, z) andF = −eE with the electron charge−e. We
assume that the electric field is along thex-axis, i.e.E = (E, 0, 0). Then the wavefunction
can be factorized as

ψ(x, t) = ϕ(x, t)χ(y, z). (2.2)

The equation forχ(y, z) is trivial. It simply gives a plane-wave solution. Our main concern
is in the equation forϕ(x, t):

ih̄
∂

∂t
ϕ(x, t) = ĥF (x, ∂x)ϕ(x, t) (2.3)

where the differential operator

ĥF (x, ∂x) ≡ − h̄
2

2m

∂2

∂x2
− Fx (2.4)
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has been used. A solution of equation (2.3) can be written as

ϕ(x, t) = ϕε(x) exp

(
i

h̄
εt

)
(2.5)

whereε is an energy eigenvalue andϕε(x) is the Airy function [13]

ϕε(x) = 1

2π
√
F

∫
0

dk exp i

{(
x + ε

F

)
k − h̄2

6mF
k3

}
. (2.6)

The integral contour0 is given in [13]. Eigenfunctions (2.5) form an orthonormal complete
set: ∫ ∞

−∞
dε ϕ∗ε (x)ϕε(x

′) = δ(x − x ′) (2.7a)∫ ∞
−∞

dx ϕ∗ε (x)ϕε′(x) = δ(ε − ε′). (2.7b)

Having this set of eigenfunctions it is tempting to construct a Fock space on this basis
and proceed to the many-electron quantum field theory. In order to have a physically
meaningful Fock space, the basis states must have a clear particle nature, i.e. they must
represent physically acceptable ‘wavepacket’ states. However, the physical meaning of
the eigenfunction given by (2.5) is not simple. It expresses a standing wave. That is,
the wavefunction contains travelling waves of both directions, yet it is not a bound state.
Such eigenfunctions do not fit in with the realistic picture of the electrons in metals or
semiconductors.

A possible picture of the electrons under the influence of the electric field can be given
as follows. As an initial wavefunction of the electron we may assume a plane wave with a
definite momentum, which shows that the electron is travelling in a certain direction. Then
a spatially uniform electric field is adiabatically added. Consequently, the initial plane-
wave state will be modified because of the electrical force acting on the electron. Hence, a
physically relevant question is how such an acceleration process changes the wavefunction;
namely, the time evolution of the initial plane wave. To obtain the time evolution of the
wavefunction under the influence of the electric field we can use the spectral representation
of the time-evolution operator in term of the Airy functions. This can be carried out by
applying the time-evolution unitary operator to the plane wave,

ψp(x, t) = exp

[−i

h̄
t ĥF (x, ∂x)

]
exp(ipx) (2.8)

and expanding the plane wave in terms of the Airy eigenfunctions:

exp(ipx) = 1

2π
√
F

∫ ∞
−∞

dε exp i

{−ε
F
p + h̄2

6mF
p3

}
ϕε(x). (2.9)

Then the result of the time-evolution operator can be easily obtained. It yields

ψp(x, t) = exp i

{
h̄2

6mF

[
p3−

(
p + F

h̄
t

)3
]}

exp i

{(
p + F

h̄
t

)
x

}
. (2.10)

To see the physical meaning of this result it is more convenient to define

u(x, p) ≡ exp

(−ih̄2

6mF
p3

)
exp(ipx). (2.11)
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If the phase factor of the initial plane-wave state is chosen in this way, then the time
evolution under the influence of the electric field is given as

exp

(−it

h̄
ĥF (x, ∂x)

)
u(x, p) = u(x, p(t)) (2.12)

where the time-dependent momentum variable is

p(t) = p + F
h̄
t. (2.13)

That is, the momentum is increased by an amount ofF t and the phase factor is also changed.
It should be noted that the functional form ofu(x, p(t)) defined by (2.11) does not change
during the time evolution. Therefore, the wavefunctionu(x, p(t)) seems to be suited for
studying the effects of the applied electric field on the electrons.

The result (2.10) can be rewritten as

ψp(x, t) = exp

(
i
F

h̄
tx − i

F 2

6mh̄
t3
)

exp

(−i

h̄

(h̄p)2

2m
t

)
exp

[
ip

(
x − F

2m
t2
)]

= exp{−i3(x, t)}
[

exp

(−i

h̄
t ĥ0(∇′)

)
exp(ipx ′)

]
x ′=x− F

2m t
2

(2.14)

where

3(x, t) = −F
h̄
tx + F 2

6mh̄
t3 (2.15)

and

ĥ0(∂x) = −h̄
2

2m

∂2

∂x2
(2.16)

have been defined. Equation (2.14) suggests that a solution of the free Schrödinger equation

ih̄
∂

∂t
ϕ(x, t) = ĥ0(∂x)ϕ(x, t) (2.17)

can be transformed to

ψ(x, t) = exp[−i3(x, t)]ϕ

(
x − F

2m
t2, t

)
(2.18)

which satisfies[
ih̄
∂

∂t
− ĥF (x, ∂x)

]
ψ(x, t) =

[
e−i3(x,t)

{
ih̄
∂

∂t
− ĥ0(∂

′
x)

}
ϕ(x ′, t)

]
x ′=x− F

2m t
2

. (2.19)

This result can be proved by a direct calculation. By virtue of (2.17), (2.19) yields[
ih̄
∂

∂t
− ĥF (x, ∂x)

]
ψ(x, t) = 0. (2.20)

Formula (2.18) transforms a solution of the free Schrödinger equation (2.17) to the case that
has an external electric field, (2.20). Equation (2.18) is nothing more than the Avron–Herbst
transformation [12].

To conclude this section let us remark on another formulation of the time evolution of
the electron wavefunction in an external electric field. Roy and Mahapatra [11] gave an
evolution operator for a crystal electron under the combined effect of an external electric field
and a time-dependent electromagnetic field. Although the relation between their approach
and the Avron–Herbst transformation is not clear at present, a first-order approximation of
their evolution operator seems to confirm the validity of (2.13).
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3. Electron Schr̈odinger field

Obviously, for studying a many-electron problem it is convenient to use the second quantized
electron field [15–17]. In the nonrelativistic case, let us assume the Schrödinger field for
the electrons. First we consider the electrons without an external electric field. These basic
assumptions are that the electron Schrödinger fieldφα(x) and8†β(x

′) satisfy the equal-time
canonical anticommutation relation [15]

[8α(x),8
†
β(x)]+ ≡ 8α(x)8

†
β(x
′)+8†β(x′)8α(x) = δαβδ(x− x′) (3.1)

whereα andβ denote the spin variables. Then the Hamiltonian of the electrons is assumed
as

H = H0+Hint (3.2)

with

H0 =
∑
α

∫
d3x8†α(x, t)h̃0(∇)8α(x, t) (3.3)

and

Hint = 1
2

∑
α

∑
β

∫
d3x

∫
d3x′8†α(x)8

†
β(x
′)V (|x− x′|)8β(x

′)8α(x) (3.4)

whereV (|x − x′|) is an electron–electron interaction potential. In (3.3) we have used the
kinetic-energy differential operator

h̃0(∇) ≡ − h̄
2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
. (3.5)

The Heisenberg picture for an arbitrary field operator� = �(0) can be expressed in terms
of the Hamiltonian as

�(t) ≡ exp

(
i

h̄
H t

)
�(0) exp

(−i

h̄
H t

)
. (3.6)

Then the equation of motion for the electron Schrödinger field is

ih̄
∂

∂t
8α(x, t) = h̃0(∇)8α(x, t)+

∑
β

∫
d3x′′8†β(x

′′, t)8β(x
′′, t)V (|x′′ − x|)8α(x, t).

(3.7)

Now we introduce the transformation

9α(x, t) = exp[−i3(x, t)]8α(r(x, t), t) (3.8)

where

3(x, t) = −F t
h̄
x + F 2

6mh̄
t3 (3.9)

and

r(x, t) = x−∆(t) (3.10)

1x(t) = F

2m
t2 1y(t) = 0 1z(t) = 0. (3.11)
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This transformation is the field theoretical version of the Avron–Herbst transformation
defined for the single-particle wavefunction in (2.18). By straightforward computation the
following equation is obtained:[

ih̄
∂

∂t
− h̃F (x,∇)

]
9α(x, t)

=
{

exp[−i3(x, t)]

(
ih̄
∂

∂t
− h̃0(∇r)

)
8α(r, t)

}
r=r(x,t)=x−∆(t)

(3.12)

with

h̃F (∇) ≡ ĥF (x, ∂x)− h̄2

2m

(
∂2

∂y2
+ ∂2

∂z2

)
. (3.13)

In order to derive the equation of motion for the field operator9α(x, t) we note that the
electron–electron interaction term can be expressed as∑
β

∫
d3x′9†β(x

′, t)9β(x′, t)V (|x− x′|)9α(x, t) = exp[−i3(x, t)]

×
∑
β

∫
d3x′8†β(x

′, t)8β(x
′, t)V (|x− x′ −∆(t)|)8α(x−∆(t), t)

= exp[−i3(x, t)]
∑
β

∫
d3x′′8†β(x

′′ −∆(t), t)8β(x
′′ −∆(t), t)

×V (|x−∆(t)− x′′ +∆(t)|)8α(x−∆(t), t)

= exp[−i3(x, t)]

[∑
β

∫
d3r′8†β(r

′, t)8β(r
′, t)

×V (|r′ − r|)8α(r, t)

]
r=x−∆(t)

. (3.14)

We now combine (3.12) and (3.14) to obtain the equation of motion for the transformed
field operator9α(x, t)

ih̄
∂

∂t
9α(x, t) = h̃F (∇)9α(x, t)

+
∑
β

∫
d3x′′9†β(x

′′, t)9β(x′′, t)V (|x′′ − x|)9α(x, t). (3.15)

The equal-time anticommutation relation for the transformed field operators can also be
derived

[9α(x, t), 9
†
β(x
′, t)]+ = exp[−i3(x, t)] exp[i3(x′, t)]

×[8α(x−∆(t), t),8†β(x
′ −∆(t), t ]+

= exp[−i3(x, t)+ i3(x′, t)]δαβδ(x+∆(t)− x′ −∆(t))

= δαβδ(x− x′). (3.16)

Thus it has been shown that transformation (3.8) preserves the equal-time anticommutation
relation. Results (3.15) and (3.16) also lead to the following Hamiltonian to define the
transformed field9α(x, t)

HF = HF
0 +HF

int (3.17)
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with

HF
0 =

∑
α

∫
d3x9†α(x, t)h̃F (∇)9α(x, t) (3.18)

and

HF
int = 1

2

∑
α

∑
β

∫
d3x

∫
d3x′9†α(x, t)9

†
β(x
′, t)V (|x− x′|)9β(x′, t)9α(x, t) (3.19)

where we have used the kinetic-energy differential operator given in (3.13). Using the
equal-time anticommutation relation (3.16) and the Hamiltonian (3.17), we can derive
equation (3.15). In conclusion, transformation (3.8) indeed transforms the electron
Schr̈odinger field without the electric field,8α(x), to that with the electric field,9α(x, t).

4. Time-ordered product of the electron Schr̈odinger field

In the field theoretical formulation of quantum many-body problems, the Green functions
are essential tools to obtain physical quantities from the theory. One of the most widely
used Green functions is the ground-state expectation value of the time-ordered product of
the field operators [15, 16]

G0
αβ(x, t;x′, t ′) ≡ −i〈T {8α(x, t)8

†
β(x
′, t ′)}〉 (4.1)

which is of particular importance to the perturbative expansion because of the Wick
theorem [15, 16]. HereT {. . .} and 〈. . .〉 denote the time-ordered product and the ground-
state expectation value, respectively. In quantum many-body problems usually the exact
ground state is not known except for rare cases of exactly solvable models. Hence, in
the conventional approach of the quantum many-body theory, a physically plausible ground
state is assumed from the outset. A typical example is Landau’s Fermi liquid theory [16, 17].

We separate the properties of the Green function into two parts; one is owing to the
ground states and the other is owing to the dynamics of the field operator. In this section
we shall be concerned with the dynamics of the Green function, which is determined by
the canonical relations for the electron Schrödinger field in the Heisenberg picture. For the
aim, we consider the time-ordered product of the field operators

Ĝ0
αβ(x, t;x′, t ′) ≡ −T {8α(x, t)8

†
β(x
′, t ′)}. (4.2)

The equation for this time-ordered product can be obtained by using the equation of motion
for 8α(x, t) given by (3.7)[

ih̄
∂

∂t
− h̃0(∇)

]
Ĝ0
αβ(x, t;x′, t ′) = −ih̄δαβ(x− x′)δ(t − t ′)

−
∑
ζ

∫
d3x′′ V (|x′′ − x|)T {8†ζ (x′′, t)8ζ (x

′′, t)8α(x, t)8
†
β(x
′, t ′)}. (4.3)

Now we proceed to a many-electron system in a uniform electric field. The electron field
operators9α(x) and9†β(x

′) satisfy the equal-time anticommutation relation

[9α(x),9
†
β(x
′)]+ = δαβδ(x− x′). (4.4)

The Hamiltonian of the electrons is assumed to be

HF = HF
0 +HF

int (4.5)
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with

HF
0 =

∑
α

∫
d3x9†α(x)h̃F (∇)9α(x) (4.6)

and

HF
int = 1

2

∑
α

∑
β

∫
d3x

∫
d3x′9†α(x)9

†
β(x
′)V (|x− x′|)9β(x′)9α(x) (4.7)

where we have used the kinetic-energy differential operator defined by (3.13). The above
Hamiltonian is equivalent to that defined by (3.17). The Heisenberg picture of a field
operator9α(x) can be expressed in terms of the Hamiltonian as

9α(x, t) ≡ exp

(
i

h̄
HF t

)
9α(x) exp

(−i

h̄
HF t

)
. (4.8)

The equation of motion for the field operator9α(x, t) can be obtained by substituting the
explicit form of the Hamiltonian (4.5)–(4.7) into (4.8). The equation is

ih̄
∂

∂t
9α(x, t) = h̃F (∇)9α(x, t)+

∑
β

∫
d3x′′9†β(x

′′, t)9β(x′′, t)V (|x′′ − x|)9α(x, t)

(4.9)

which is equivalent to (3.15). We define the time-ordered product of the field operators
9α(x, t) and9†β(x

′, t),

ĜF
αβ(x, t;x′, t ′) ≡ −T {9α(x, t)9†β(x′, t ′)}. (4.10)

It is straightforward to obtain the equation forĜF
αβ(x, t;x′, t ′) by substituting (4.9) into the

time derivative of (4.10):[
ih̄
∂

∂t
− h̃F (∇)

]
ĜF
αβ(x, t;x′, t ′) = −ih̄δαβδ(x− x′)δ(t − t ′)

−
∑
ζ

∫
d3x′′ V (|x′′ − x|)T {9†ζ (x′′, t)9ζ (x′′, t)9α(x, t)9†β(x′, t ′)}. (4.11)

Now we shall show thatĜF
αβ(x, t;x′, t ′) can be obtained fromĜ0

αβ(x, t;x′, t ′) by a
transformation similar to (3.8):

ĜF
αβ(x, t;x′t ′) = exp[−i3(x, t)+ i3(x′, t ′)]Ĝ0

αβ(r(x, t), t; r(x′, t ′), t ′) (4.12)

where3(x, t) and r(x, t) have been defined by (3.9) and (3.10). To clarify the above
proposition, we define the right-hand side of (4.12) as

K̂F
αβ(x, t;x′, t ′) ≡ exp[−i3(x, t)+ i3(x′, t ′)]Ĝ0

αβ(r(x, t), t; r(x′, t ′), t ′). (4.13)

Differentiating (4.13) with respect tot , we find

ih̄
∂

∂t
K̂F
αβ(x, t;x′, t ′) = h̄

∂3(x, t)

∂t
K̂F
αβ(x, t;x′, t ′)

−ih̄ exp[−i3(x, t)+ i3(x′, t ′)]δ(t − t ′)
×[8α(x−∆(t), t),8†β(x

′ −∆(t ′), t ′)]

− exp[−i3(x, t)+ i3(x′, t ′)]T
{

ih̄
∂8α(x−∆(t), t)

∂t
8
†
β(x
′ −∆(t ′), t ′)

}
(4.14)
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where the first term on the right-hand side simply gives

h̄
∂3(x, t)

∂t
K̂F
αβ(x, t;x′, t ′) =

(
−Fx + F 2

2m
t2
)
K̂F
αβ(x, t;x′, t ′) (4.15)

and the time derivative in the third term on the right-hand side of (4.14) gives

∂8α(x−∆(t), t)
∂t

=
3∑
k=1

(
∂8α(r, t)

∂rk

)
t

(
∂rk

∂t

)
x

+
(
∂8α(r, t)

∂t

)
r

= −F t
m

∂8α(x−∆(t), t)
∂x

+
(
∂8α(r, t)

∂t

)
r

. (4.16)

Using (3.7) for the second term on the right-hand side of (4.16), we obtain

ih̄
∂8α(x−∆(t), t)

∂t
= −ih̄F t

m

(
∂8α(x−∆(t), t)

∂x

)
t

− h̄2

2m
∇2
x8α(x−∆(t), t)

+
∑
β

∫
d3x′′8†β(x

′′, t)8β(x
′′, t)V (|x′′ − x+∆(t)|)8α(x−∆(t), t).

(4.17)

This result further yields

exp[−i3(x, t)]ih̄
∂8α(x−∆(t), t)

∂t
= − h̄

2

2m
∇2
x (exp[−i3(x, t)]8α(x−∆(t), t))

−F
2t2

2m
exp[−i3(x, t)]8α(x−∆(t), t)

+
∑
β

∫
d3x′′8†β(x

′′, t)8β(x
′′, t)V (|x′′ − x+∆(t)|)

× exp[−i3(x, t)]8α(x−∆(t), t)

= − h̄2

2m
∇2
x9α(x; t)−

F 2t2

2m
9α(x, t)

+
∑
β

∫
d3x′′9†β(x

′′, t)9β(x′′, t)V (|x′′ − x|)9α(x, t). (4.18)

For the derivation of the electron–electron interaction term in the last line of (4.18), we
used (3.14). Now, combining equations (4.14)–(4.18) we obtain the final result:

ih̄
∂

∂t
K̂F
αβ(x, t;x′, t ′) = h̃F (∇)K̂F

αβ(x, t;x′, t ′)− ih̄δαβδ(x− x′)δ(t − t ′)

+
∑
ζ

∫
d3x′′ V (|x′′ − x|)T {9†ζ (x′′, t)9ζ (x′′, t)9α(x, t)9†β(x′, t ′)} (4.19)

which is the expected equation of motion for the time-ordered productĜF
αβ given by (4.11).

Thus, we have proved that the time-ordered productK̂F
αβ(x, t;x′, t ′) and ĜF

αβ(x, t;x′, t ′)
satisfy the same equation.

5. Concluding remarks

We have shown an extension of the Avron–Herbst transformation to the second quantized
Schr̈odinger field for an interacting electron gas. Although the calculation in this
paper is restricted to the electron field, i.e. the field operator satisfying the equal-time
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anticommutation relation such as (3.2), the entire calculation in sections 3 and 4 can hold
for the boson field satisfying the equal-time commutation relation. That is, equations (3.15)
and (4.19) can also hold for the Schrödinger field satisfying the boson-type commutation
relation. Therefore, it is straightforward to apply the present formulation to a boson system
such as liquid He4 to investigate the effect of, for instance, the gravitational field.

Regarding the time-ordered product discussed in section 4, we remark that a practical
application is possible by introducing a physically acceptable ground state for the
Hamiltonian (4.5). One of such possible ground states may be a Fermi-liquid-type ground
state whose Fermi sphere has a shifted centre in the momentum space. The shift takes
place owing to the acceleration of electrons by an electric field. The magnitude of the shift
must be determined self-consistently by taking account of the effects of dissipation. Once
we introduce such a ground state, the transformation derived in section 4 can be applied to
the Green functions. Such an application of the Avron–Herbst transformation as well as a
further extension to the density–density response function will be discussed in a forthcoming
paper.
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